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For one-way transmission that is not subject to a bandwidth
constraint, orthogonal codes are known to achieve the capacity of the
additive white gaussian noise channel, For a transmitted signal that
is subject to a bandwidth constraint, no deterministic way of
constructing a code achieving channel capacity has been known. The
first such code--for the noiseless feedback case-~is developed in this
study. It is known that a noiseless feedback channel does not improve
the capacity of the discrete memoryless forward channel; however the
feedback channel may reduce the coding effort.

Two new coding schemes using feedback are developed and the
influence of feedback noise on each is investigated. The WB coding
scheme achieves capacity for the wideband (W — =) case and the BL
coding scheme achieves capacity for the bandlimited case, The latter
scheme could be very important for satellite communications since it
allows for a substantial decrease of the coding effort while permitting

the satellite to transmit its information at a rate arbitrarily close

to channel capacity. WM
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SYMBOLS

a a constant in the iterative expression of the Robbins-Munro
procedure

an sequence of coefficients

C ) channel capacity

d number of the time units of loop delay

E(+) expected value

F(*) regression curve

g gain factor

h(t) impulse response of the receiving filter

K a constant

M number of messages

N number of iterations per message

N(m,og) normal distribution with mean m and variance o°

No noise power spectral density

n(t) additive white (gaussian) noise

o(-) of the order of

Pav average power

Pe probability of error

Ppeak peak power

R rate of signaling

S/N signal-to-noise ratio

s time

s(t) transmitted signal

T coding delay

w signal bandwidth
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X abscissa of the regression curve; a random variable

X abscissa of the regression curve; deterministic
Y(x) noisy observation of the value of the regression curve at
y(t) received waveform

Z additive (gaussian) random variable

o slope of the regression curve at the root

A time unit

&, p a small positive number

8(+) impulse function

€ a small positive number; an element of

S root of the regression curve, message point

a standard deviation

14

asymptotic equality

~ approximate equality; also, distributed like, as in the
following example:

X ~'N(m,02)
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I. INTRODUCTION

A, BACKGROUND

A general discussion of feedback communication systems was given
in 1961 by Green [Ref. 171 who distinguished between post- and pre-
decision feedback systems. In postdecision feedback systems the
transmitter is informed only about the receiver's decision; in
predecision feedback systems, the state of uncertainty of the receiver
as to which message was sent is fed back, Postdecision feedback
systems require less capacity in the backward direction; however, the
improvement over one-way transmission will also be less than that ob-
tainable with predecision feedback,

Viterbi [Ref. 27 discusses a postdecision feedback system for the
white gaussian noise channel, A decision is made when the a posteriori
probability computed by the receiver exceeds a certain threshold
determined by the probability of error. The transmitter is informed
by means of postdecision feedback that the receiver has made its
decision, and it then starts sending the next message.

As examples of predecision feedback systems, two interesting
sequential schemes are now introduced.

Horstein [Ref. 37 discusses a coding scheme for the binary
symmetric channel in which the transmitter sends a sequence of signals
so as to maximize the a posteriori probability of the particular
message being transmitted. When the a posteriori probability of
some message, as computed by the receiver, exceeds a certain threshold,
determined by the probability of error, the receiver makes its
decision. The transmitter is continually informed about the prob-

abilities computed by the receiver and changes its transmission

accordingly.
Turin [Ref. i] has a scheme applying to the whitc gaussian noisc
channel, It is similar to Horstein's scheme in that the recceiver

computes a likelihood ratio and makes its decision as Lhis likclihood
ratio exceeds a threshold sct by the probability of error, The valuc

of the likelihood ratio is l[cd back to the transmitter continually
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during the decision-making process. The transmitted signal is a
function of the binary digit (that is, O or 1) being sent and of the
value of the likelihood ratio, such as to make this ratio increase as
fast as possible, Average and peak power constraints are invoked.
The average time T for deciding on a binary digit turns out to be
T =1n 2(P__/N )_l, where P is the average power and N_ is the
av' o av o
noise power spectral density. The probability of error Pe vanishes

if infinite peak power and infinite bandwidth are allowed. Hence, a

rate is achieved that is equal to the channel capacity

]

C = EEX nats/sec (1.1a)
o
The two coding schemes developed in Chapters II and III are
predecision feedback systems: the first is applicable to the white
gaussian noise channel and is designated the WB coding scheme; the
second is applicable to the bandlimited white gaussian noise channel
and is designated the BL coding scheme., Unlike those of Horstein and
Turin, these schemes are not sequential in that the time T allocated
to the transmission of a particular message is fixed beforehand.

The BL coding scheme discussed in Chapter III gives the first

deterministic procedure to achieve the capacity C for the band-

limited white gaussian noise channel:

C=W1ln |1 + nats/sec (1.1Db)

av
N W
o
Elias [ Ref, 57 has discussed a predecision feedback scheme applicable
to this same channel. He divided the channel into K subchannels of
bandwidth w = W/K. If noiseless feedback is available and if K - =,
information can be sent at a rate cqual to that of Eq, (1.1b).
However, since the signal bandwidth is w instead of W, the coding

and decoding complexity for the feedback scheme becomes an arbitrarily

small fraction of that required without feedback.

x"Nats'" is defined as natural units of information in accordance with
IEEE standards.

SEL-(5-073 -
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B. NEW RESULTS

Consider the situation represented by Fig, 1. The transmitter
sends one of M possible signals of duration T, In the channel the
signal is disturbed by additive noise n(t) and therefore the receiver
has to guess which of the M messages was actually sent., The word
"channel' stands for physical perturbations in the transmission medium
and in the receiver front end, as well as for transmitter constraints,
Examples of transmitter constraints are an average power constraint,

a peak power constraint, a constraint on the signal bandwidth, etc,

(- RECEIVER

ol

FIG. 1. TYPICAL COMMUNICATION PROBLEM.

The signaling rate is defined as R = (1ln M)/T, nats/sec,

Consider a particular system, The probability of error will be a
function of the number of possible transmitted signals M and of their
duration T. It shall be assumed that the M signals are chosen so

as to minimize the error probability, which is denoted by Pe,opt(M’T)'
For fixed T the probability of error will increase with increasing

M (greater probability of confusion), and for fixed M the prob-
ability of error decreases as a function of T (one has a longer look

at the noise and can thus do a better job in predicting its effect).

-3 - SEL-65-073



RT
Therefore, if M = e does not increase too fast with T (that is,
if the rate R is low enough), P (M,T) can be made arbitrarily

e,opt RT
small by increasing T (and also M, since M = e )

Shannon [Ref, 6] shows that there exists a critical rate C such
that for any rate R < C there exists a coding scheme for which the
probability of error can be made arbitrarily small by making T 1large
enough, This is not the case for any rate higher than C., That is,

0 for R« C

lim P (M,T) =
e,opt 1 for R>C

T -

R
M=e T

This critical rate C 1is called the channel capacity. For a more
detailed consideration of channel capacity see the book by Wolfowitz
[Ref. T77.

In the present work two channels are studied:

1. In one channel the disturbance is additive white gaussian noise
with two-sided spectral density N /2, The only transmitter
constraint is average power Pav' oIn this case the capacity is

nats/sec (1.1a)

It is known that orthogonal codes can be used to achieve this
channel capacity. These codes use a bandwidth that grows
exponentially with T,

2. In the second channel the disturbance is again additive white
gaussian noise with spectral density N /2. The transmitter
constraints are average power P and’a constraint to (-W,w)
on the signal bandwidth. In this case the capacity is

Py, |
C=Wl1ln 1+ = nats/sec (1.1b)

No deterministic coding scheme is known that achieves this
capacity,

SEL-65-073 -4 -




When a noiseless feedback link is associated with these channels,
one might expect to have a higher channel capacity because of additional
flexibility. However, Shannon [Ref. 8] has shown that no increase in
channel capacity can be obtained for memoryless channels by use of
the noiseless feedback link, Still, some advantage should accrue from
the presence of such a link, and in fact the coding procedures required
to achieve a given probability of error (for any rate up to channel
capacity) are much less complicated than those needed to achieve the
same performance without a noiseless feedback link.

In Chapter II a coding scheme is presented for signaling over
additive white gaussian noise channels that have no bandwidth limi-
tation (channel 1) on the transmitted signals. For this coding scheme

the error probability for large T 1is approximately

exp [_.%% eE(C—R)TJ

e ™ _R)T 2
[6n % e2(c R)T}

(1.2a)

This equation can be compared with the asymptotic error probability
for the best codes (orthogonal codes) without a feedback link, In

this case [see, e.g., Fano, Ref., 9, Chapter VI],

p . Const e—TE(R)

© ™

(1.2p)

where
% - R for 0 <R < %
E(R) = 2 c ;1B <2
(/¢ - /R) for < R< C

A comparison of these two expressions indicates that although the
channel capacity is not increased by noiseless feedback, the coding
delay T for the scheme developed here is only a fraction of the

coding delay for orthogonal codes.

-5 - SEL-65-073



The WB coding scheme discussed in Chapter II has two difficulties
associated with it. One is that for rates close to channel capacity
the number N of iterations (transmissions) per message becomes Very
high (e.g., 109). Secondly, the peak power approaches infinity for
rates close to channel capacity. With the BL coding scheme discussed
in Chapter III, however, these difficulties can be avoided.

The latter coding scheme applies for channel 2, i.e., bandlimited
signals., It is the first deterministic coding procedure to achieve
capacity for this particular channel. The following exact expression

for the error probability has been derived:

4 a

> (1.2¢)

\_ Y,

This expression can be compared with the bounds on the best achievable
Pe for one-way communication as plotted by Slepian [ Ref. 107. A
considerable improvement due to noiseless feedback is found.

Both Chapters II and III consider the deterioration in performance
due to feedback noise, If one wants the probability of error to
vanish, one finds that the rate of signaling approaches zero. On the
other hand, when the rate of transmission is held constant, the prob-

ability of error has a minimum achievable value different from zero,

SEL-65-073 -6 -




II. A FEEDBACK COMMUNICATION SYSTEM WITH
NO CONSTRAINT ON THE BANDWIDTH

In this chapter a coding scheme for additive white gaussian
noise channels with noiseless feedback is developed. There is an
average power constraint on the transmitted signals., Let Pav be the
average transmitted power, The additive (zero mean) white gaussian
noise has double-sided spectral density NO/2, and so the covariance
function is (N°/2) 8(t-s). There are no restrictions on the bandwidth
or on the peak power of the signals. Such assumptions are usually
unrealistic for terrestrial communication channels but seem to be
quite appropriate in space communication problems. In the next
chapter, however, channels that do have bandwidth and peak-power con-
straints shall be treated.

In the following sections it will be shown that the additive
white gaussian noise channel can be converted to an equivalent time-
discrete channel and that the channel capacity C = Pav/No of the
additive white gaussian noise channel can be achieved. The probability
of error for finite coding delay T will be calculated and the results
compared with those for orthogonal codes for one-way transmission,

Some properties of the WB coding scheme, such as bandwidth, peak
power, loop delay, and nongaussian statistics, will be discussed. The
deterioration in performance of the WB coding scheme in the presence

of feedback noise will be considered.

A, CHANNELS WITH ADDITIVE WHITE GAUSSIAN NOISE

In the WB coding scheme the information is transmitted by suitably
modulating the amplitude of a known basic signal waveform ¢(t),

Let the signal s(t), see Fig. 2, be of the form

S(t) =z Xi ¢)(t—iA)) i=1, 2: oo

Assume that ¢(t) satisties

-7 - SEL-65-073



[ (t-10) 0(e-30) at = 5, (2.1)

ij

The integral extends over all values of t for which the integrand

is different from zero.

n(t)

s(t) */}.\ y (1)
——
7\—/

FIG, 2, MODEL FOR THE ADDITIVE NOISE CHANNEL.

Reception is achieved using a filter matched to &(t), that is,

h(t) = ¢(-t). The output of this matched filter at t = i,

i=1,2, ..., is the sequence < Yi(Xi) >, where Yi(Xi) =X, + 2.
The additive random variables
z, = [ n(t) §(e-10) ar (2.2)

will be shown to be independent for different values of i, Their
variance is 02 = No/2, where No/2 is the (two-sided) spectral
density of the white gaussian noise n(t). Note that the covariance
function of the noise n(t), which is the Fourier transform of No/2,

is

Therefore

SEL-65-073 -8 -




|

E Jf n(t) n(s) O(t-id) ¢(s-ja) dt ds

=y
f—
N
(=
<_‘N
)
i

1

JI E {n(t) n(s)] d(t-ip) O(s-ja) at ds

]

N
59 Jj 5(t-s) d(t-1A) ¢(s-jA) dt ds

2

29 Jf d(t-i8) ¢(t-ja) dt = 59 85
Next it will be shown that using the type of modulation discussed
above, the white gaussian noise channel can be replaced by a time-
discrete channel where a sequence of numbers < Xi > 1is transmitted
and a sequence of numbers < Yi(Xi) > =< Xi + Zi > 1is received. The
time unit is A. It has been shown that the random variables Zi are
independent for different values of i and that their variance is
02 = No/2. Since Eq., (2.2) is a linear functional of n(t), z, is
a gaussian random variable whenever the additive noise n(t) is
gaussian, Furthermore, the transmitted energy is equal to I Xi2
in this time-discrete channel model, because of the orthonormality
condition (2.1),
The question is, does one lose information in not considering
the noise component n(t) = n(t) - n(t), where n(t) = T z, O(t-in).
It is easily shown that f n(t) ¢(t-id) @t =0, i =1, 2, ...,
so that lg(t) is orthogonal to the signal space.

Next let us find the correlation between n(t) and n(t).

]

E [H(t) n(t)] E [Z z, ¢(t-iA)] [n(t) - Tz, ¢(t—iA)]

L4 O(t-iA) E [n(t) J n(s) ¢(s-in) ds}

-9 [¢2(t—iA) E(Zi2)]

T < O(t-ih) f E [n(t) n(s)] d(s-id) ds

N
o) 2 .
-5 z ¢ (t—lA)
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N N
=% [¢(t-iA) = fé(t-S) ¢(s-i0) ds] -5z 6°(t-18) = O

It is seen that n(t) and n(t) are uncorrelated; and since they are
gaussian, n(t) is independent of n(t) and hence of Z.

It has been shown that one can replace the additive white gaussian
noise channel by a time-discrete channel where a sequence < Xi > is
sent, at integral values of the time unit A, and where a sequence
< Yi(Xi) > =< Xi + Zi > iz received. The gaussian random variables Zi
have zero mean, variance g = N0/2, and are uncorrelated for different

2
values of i. Furthermore, the transmitted energy is equal to T Xi'

B, THE WB CODING SCHEME

The coding scheme developed in this section was suggested by the
Robbins-Munro [Ref, 117] stochastic approximation technique which is
described in Sec, 1. Theorems concerning stochastic approximation
shall also be used when dealing with peak-power limitations, loop delay,
and nongaussian noise,

1. The Robbins~Munro Procedure

Consider the situation indicated in Fig. 3. One wants to
determine ©, a zero of F(x), without knowing the shape of the
function F(x), It is possible to measure the values of the function
F(x) at any desired point x, The observations are noisy, however,
so that instead of F(x) one obtains Y(x) = F(x) + Z, where Z is
some additive disturbance. The '"'noise'" Z is assumed to be independent
and identically distributed from trial to trial. To estimate O,
Robbins and Munro proposed the following recursive scheme: Start with

an arbitrary initial guess Xl and make successive guesses according to

Xn+l = Xn - anYn(Xn), n = l’ 2, PR

For the procedure to work, that is, for X +1 to tend to ©, the
n A
coefficients a must satisfy a, >0, I a =, and = a; < », A

<

sequence << an > fulfilling these requirements is a_ = 1/n.

N
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Theorem. When the above conditions on the a

FIG. 3. THE ROBBINS-MUNRO PROCEDURE,

The following additional requirements are needed on the
function F(x) and on Z:
1. F(x) 2 0 according to x 2 .
2. inf { | F(x) |; e< ]| x8 | <1/¢ } > 0 for all € > 0.
3. | F(x) | < Kk, | x-8.| + K,, where K and K, are constants.
2.t <o 2, 2 2
b, It o (x) = E [¥(x) - F(x)] °, then sup 0°(x) = 0~ < =,

With these requirements, the following theorem can be established.

> the EF(x), and the
Z are met, Xn - 0 almost surely; and if E l Xl 1 < o, then
n

E | x -6 12 - o.
a0

Robbins and Munro proved the convergence in mean square, The

"convergence almost surely” was [irst proved by Wolfowitz [Ref, 12

- 11 - SEL-(5-0(3



in 1956. The best source for a proof of the preceding theorem is
Dvoretsky's paper [Ref. 13], where several types of stochastic-approx-
imation procedures are treated in a unified manner.*

The Robbins-Munro procedure is nonparametric, that is, no
assumptions concerning the distribution of the additive disturbance,
except for zero mean and finite variance, are necessary, However, it
was shown by Sacks [Ref, 157 that /n (Xn+l-9) is normally distributed
for large n. (This result shall be used later.) Let the following

assumptions, which complement the earlier requirements, be fulfilled.

5. 02(x) - 02(9) as x - 0
6. F(x) = o(x - 8) + 8(x), where a>0 and 8(x) = o(|x - 8|*P),
p > 0.
. 249
7. There exist t >0 and § > 0 such that sup {E‘Z(x)| ;
|x-6] <t} <o

8, 2a>a

Theorem (Sacks). Fulfillment of all the above conditions yields

2

o ‘
/n (Xn+l %) N1 O, a(20%n5

2. Description of the WB Coding Scheme

The transmitter has to send one of M possible messages to
a receiver, A noiseless feedback channel is available, The proposed
scheme, as shown on Fig. U4, is described below.

Divide the unit interval into M disjoint, equal-length
"message intervals.' Pick as the ''message point' 8, the midpoint of
the message interval corresponding to the particular message being
transmitted. Through this message point ©, put a straight line
F(x) = a(x-8), with slope «a > 0. Start out with X, = 0.5 and send
to the receiver the ''number" F(Xl> = a(Xl—e), as discussed in Sec. IIA,
At the receiver one obtains the ''number" Yl(xl) = a(Xl—e) + 2, where

ZL is a gaussian random variable with zero mean and variance

X .
A recent general survey of stochastic approximation methods is given
in Venter's thesis [Ref. [U],.

SEL-G%-073 - |12 -




o2 - N /2. The receiver now computes X, = Xl - (a/1) Yl(Xl), where
a is a constant which will be specified soon, and retransmits this

value to the transmitter which then sends F(Xg) = a(Xg-e). In general,

one receives: Yn(Xn) = F(Xn) + 2, and computes X .. =X - (a/n)

Y (X ). The number X
n' n

N+l is sent back to the transmitter, which then

will send F(Xn+1) = a(Xn+l—9).
| ]
e | 7|
b
F(Xqn) 1 - | Yo (Xn) = F(Xq) +Zy
C/ o |
o
Xn‘H I I Xn...l: Xn— ]/an Yn(xn)
TRANSMITTER RECEIVER

FIG. 4. PROPOSED CODING SCHEME FOR WIDEBAND SIGNALS.

From the theorem on asymptotic distributions of stochastic
approximation procedures, it follows that the best value for a is
a = 1/ and that in this case /n (Xn+l—6) converges in distribution
to a normal random variable with zero mean and variance (0/002.

Straightforward computation shows that in the case where the
additive disturbance is gaussian, Xn+l wi;l be N(9, 02/Q?n), that
is, normal with mean © and variance O /O n,

Now suppose that N 1iterations are made before the receiver
makes its decision as to which of the M messages was sent, What is
the probability of error? The situation is presented in Fig, 5. After
N iterations, X... ~ N(©, cg/ogN). The length of the message interval

is 1/M. Hence, the probability of X lying outside the correct

N+1
message interval is
Tyt
= —_— 2
P, = 2 erfc U (2.3a)

- 13 - SEL-65-073



2
~ o
XN+I N(e,m)

Py /2 Fe/2

[ 8 I

- M

FIG. 5. DERIVATION OF THE ERROR
PROBABILITY.

How large can one choose M in order for the probability of
error to vanish for increasing N? The distribution in Fig. 5 squeezes
in at a rate 1//N (this being the standard deviation). Therefore if
1/M is decreased at a rate slightly less than 1//N, one can '"trap"
the gaussian distribution within the message interval and thus make
the prob?bility of correct detection go to unity. Setting
M(N) = ya(1-¢) yields the probability of error

a . e/2
P, =2 erfc | 5= N (2.3b)

and as N - «,

0 for ¢ > 0
lim Pe
N- o 1 for e < 0

The critical rate determined by € = 0 will be

In M(N) In N
Rcrit = = i . = 55 nats/sec

In order to keep Rcrit finite as T — o, N must grow exponentially
2AT

with T. Thus, setting N = e , with A = a constant, gives

SEL-65-073 - 1k -




Rcrit = 55— = A nats/sec

Now what prevents us from choosing A arbitrarily large and thereby
achieving an arbitrarily high rate of error-free transmission? The
answer is that A is limited by the average power constraint P v’
which has not as yet been taken into account, The effect of Pav on
A can be seen by calculating the average transmitted power with the
proposed scheme, The transmitted power will depend upon the additive
noise Z. Therefore, using E(*) to denote averaging over the noise
process gives

P = % E oz2(xl - 6)2 + = o?(x - 9)2

av iz i+l

Now T = (1/2A) 1n N, and assuming a uniform prior distribution for
the message point 6, E(Xl-e)2

E(X

will be 1/12, Moreover, since

i+ 9)2 = og/o?i, substitution in the formula for the average

power leads to

2 N-1
2A a 2 1
Pav = In N 12 + 0 .Z i (2.&)
i=]1
Therefore
2 Pav
i = = A A =
lim PaV(N) 20°A = N_ or N,

N -

and thus A 1is constrained to Pav/N0 and the critical rate becomes

Rcrit = A = N

nats/sec (2.5)
)

From the above it is seen that the WB coding scheme presented here

achieves channel capacity.
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C. OPTIMUM Pe FOR FINITE N

In this section the value of the slope @, given R/C and
given N, that minimizes the probability of error shall be determined.

From Eq. (2.3), minimizing the probability of error is equivalent to

maximizing
a? € O? €
-3 N~ = N N
Lo o

2
Now, differentiating with respect to &, one has for the optimum O

€
d 01 € 1l € 04 dN de
N = = N + =0
2 2
a(o"/n )\ o Mo 9 g(of/N)
To compute ———ESEL——, an expression for ¢ 1is needed, Substituting
d(cf /No)
R = (l—e)Rcrit = (1-¢)A, and o° = NO/2 into formula (2.4) leads to
2 N-1 1
R=(l-e)A=(1-e)C | zm + T % 1n N
o i=1
from which
2 N-1
R (0] 1 -1
e=1 c | &5 + .Z T (1n N) (2.6)
o i=1
Hence, de/[d(QQ/No)] = - (R/6C)(1n N)'l, which yields
d o? ) 1l g€ o € R 1
N |= =N - = N°(1n N) = = 0
2 2 6
a(a /No) No 2 2No C 1n N
. 2 2 .
Therefore, the optimum value Ob of o is
\-1
2 R\~ e
= - <.
o oN C) (2.7)

o
Substituting for Q; in the formula for the probability of

error gives
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1

C . e\2
Pe = 2 erfc 3 R N

Figure 6 gives curves for the probability of error as a function of the
number N of iterations, The parameter R/C is the rate relative to
channel capacity., The curves start at that value of N beyond which

e as given by formula (2.6) is positive. Note that for relative rates
approaching unity, the number of transmissions per message becomes very

high,

RELATIVE RATE R/C=09

104

g,
%

ot

PROBABILITY OF ERROR P

L 1 1 1
10 i0? 10* 10* 10° 10° 107 10°
NUMBER OF ITERATIONS N

FIG. 6. THE PROBABILITY OF ERROR
AS A FUNCTION OF THE NUMBER OF
ITERATIONS.

Formula (2,7) gives the optimum value of the slope « as a
function of the relative rate R/C and the noise power spectral
density N0/2. Figure 7 shows curves of the probability of error vs

the slope squared relative to its optimum value,
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RELATIVE RATE R/C =06

o® o3t

PROBABILITY OF ERROR

1% NUMBER
OF ITERATIONS\N= 2000
o 1 | 1 Lo | 1
[¢) 0.25 05 075 1.0 1.25 15 175

SLOPE SQUARED RELATIVE TO OPTIMUM VALUE a%a®

FIG. 7. THE PROBABILITY OF ERROR
VERSUS THE SLOPE SQUARED RELATIVE
TO ITS OPTIMUM VALUE,

For the WB coding scheme one can also write down an asymptotic
expression for the probability of error, similar to expression (1.2b),
for orthogonal codes. From Eq, (2.3) and substituting 02 = No/2,
the probability of error becomes

1
o) 2

04 €
=2 £ =
Pe erfc 2N° N

equation is asymptotically equal to

oo |- 3 (2]
~ 1

By using the optimum oi of o? given by Eq. (2.7), the above
e ]
Pe —~
R €
2AT

Furthermore, N =¢€e~ , R = (l1~¢)A, where A 1is asymptotically eyual

Z

rojH

to C as was shown in Sec. B2, Thus, Pe is asymptotically equal to
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exp [_ %% e2(C—R)T]

P~ [&t % e2(c—R)T]§ (1.2a)

For one-way channels, the best Pe (achieved by orthogonal codes)
is given by Eq. (1.2b).

An alternate comparison can be based on the blocklength L, in
binary digits, which %e defined as follows. Let 2L = M. After N
iterations, M is NEKl-e) and hence L =3(1-¢) log, N. TFigure 8

gives curves of the probability of error vs the blocklength I,

RELATIVE RATE R/C=09

o™

S,
o
T

g
s
T

R/C=
05| 06 o7

PROBABILITY OF ERROR Pe
]
s

10" 1 1 1l L
I 3 5 7 9 il i3 15
BLOCKLENGTH L IN BINARY DIGITS

FIG. 8. THE PROBABILITY OF ERROR
AS A FUNCTION OF THE BLOCKLENGTH
IN BINARY DIGITS.

Plotting 1log vs L for orthogonal codes gives

P
10 e
TE(R I, RT
p o~- —TER) 4 M om-a
10glO e 1In 10 €

so that
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Pe ~ L -E—g—g—l log 2

log 10

10

This expression for log Pe is plotted in Fig. 9 for several values

10
of R/C.

107 -
a®
« 107 RELATIVE RATE R/C:=0.9
2
74
W
S
4
. 10*
hal
3
a
<
@ =
g i R/C= 08
10~
|O—1 1 { 1 | 1 !
0 1000 2000 3000 4000 5000 6000 7000

BLOCKLENGTH L IN BINARY DIGITS

FIG. 9. THE ASYMPTOTIC EXPRESSION
FOR THE PROBABILITY OF ERROR FOR
ORTHOGONAL CODES AS A FUNCTION OF
THE BLOCKLENGTH IN BINARY DIGITS.

For example, let the relative rate be R/C = 0.8. Suppose a
probability of error Pe = ]_O_7 is required, The asymptotic expression
for the probability of error for orthogonal codes indicates a block-
length of approximately L = 1625 binary digits (see Fig. 9). Figure
8 shows that the WB coding scheme requires a blocklength of only
L = 12 binary digits. For relative rates closer to unity an even
more marked difference is obtained,

If C =1 bit/sec, these blocklengths correspond to a coding delay

T as given below:
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1629

55 = 2031.25 sec (orthogonal codcs)
. €
T =
12 .
o = 15 sec (WB coding scheme)
P
D. SOME PROPERTIES OF THE WB CODING SCHEME

1. Bandwidth
The feedback communication system described in this chapter
has no constraint on the bandwidth. It will be shown presently why it
is not possible to cope with a bandwidth constraint.
From Sec, IIB, N = e2AT iterations are made in T sec.
Suppose the transmitted signals have bandwidth W, then the number of
iterations is at most equal to the number of degrees of freedom. The
number of degrees of freedom of a waveform of bandwidth W and
duration T 1is approximately equal to 2WTI, Putting N = 2WT,
W - %E e2AT (2.8)
where
-1
azc (g + T =) N (2.9)
o i=1
which follows from substituting 02 = No/2 into Eq. (2.4). From Eq.
(2.9), A 1is asymptotically equal to C for large N and hence
W~ 1/(2T) eECT. It is thus seen that W grows exponentially with T
and 1lim W(T) = =,
T™ substituting T = 1/(2A) 1n N into Eq, (2.8) leads to an

expression for W in terms of the number of iterations:

N

W= A n N

cps (2.10)
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2. Peak Power
It is known a priori that 6 must lie in the interval [0, 17.
Restricting the Robbins-Munro procedure [Ref. lL] to this interval
will limit the peak power for fixed bandwidth W, This is done with
the aid of the following theorem of Venter [Ref. 147.

Theorem (Venter), Suppose D is a closed convex subset of RP, P-

dimensional Euclidean space, and it is known a priori that © ¢ D,

Then modify the stochastic approximation procedure in the following

way:
/‘
X +aY (X) if X +avY(X)eD
n nn'n n nn' n
X =
a1 = S
the point on the if X +aY (X)) £D
n nn n
boundary of D
closest to

~LX anYn(Xn)

Whenever the original procedure converges, so does its restriction to

D. The asymptotic rate of convergence for both procedures is the same.

A special case of this theorem, in which the closed convex
subset is equal to the unit interval [0, 1], and P =1, is appli-

cable to the WB coding scheme. Hence the modified procedure is as

follows:
0 if X +avY(X)<oO0
n nnt ' n —
= + i + X
X QX anYn(Xn) if  0<X anYn( n) <1
1 if 1 <X +ay¥Y (X)
\ = "n nnn
In investigating how the peak power Ppeak depends on the

bandwidth W, consider the basic signal ¢(t) which has bandwidth W
and which satisfies the orthonormality condition (2.1) for A& = 1/(2W):

¢(t) - /BT sin 2nWt

2nWt

SEL-65-073 - 20—




2AT
With N = e,

213

Ppeak -

T

Hence for large T (or N),

average power remains finite,

-2AT
€

1
A

1 1
_Te Q;Te

the P goes to infinity while the

peak

As in Turin's scheme [Ref., k4],

infinite

peak power is required in order to achieve zero probability of error,

Figure 10 shows the expected instantaneous transmitter power as a

function of time for finite value of the coding delay T.

In the case

where the additive disturbance is gaussian, the variance of the

instantaneous transmitted power is three times its expected value,

EXPECTED
INSTANTANEOUS
TRANSMITTED
POWER

FIG. 10.

TIME.

3. Loop Delay

-—T —

THE EXPECTED INSTANTANEOUS
TRANSMITTED POWER AS A FUNCTION OF

Up to this point, only instantaneous feedback has been con-

sidered, In a practical situation there will be feedback delay,

Let F(x) = a(x - 9),
Zn be identically distributed.

n

and let the additive random variables

From the iterative relation

Ly (X))
an n' n’

where Y (X ) = F(X ) + Z_, it can easily be derived that
n‘'n n n

- 23 -
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n
T Z, (2.11)
i=1

In other words, when the Zn are gaussian, is the maximum

Xn+ 1
likelihood estimate of 8, based on the observations Yl(xl) through

Y (X).
Now suppose there are d units of loop delay, so that

Yn(Xn) can first be used to determine X The first time one can

n+a+l”’

use received information is when computing Xd+2'

Let us choose as the maximum likelihood estimate of

Xn+d+l
©, based on observations Yl(xl) through Yn(Xn). The iterative

relation now becomes

(n-1) X iqF X

d n 1
Xnra) = n on Yn(xn) (2.12)
It follows easily that
1 n
Xparl "7 om ? Z; (2.13)

i=1

One must complete d more iterations in order to obtain the same

variance as in the case of instantaneous feedback, and thus the

influence of the delay will become negligible for large values of n,

4, Nongaussian Noise

If the additive white noise is gaussian the WB coding scheme
will permit error-free transmission at any rate less than channel
capacity., For the scheme to work it is not necessary to know the
noise power spectral density No/2. However, as shown in Sec. IIC,
knowledge of No/2 permits one to choose the slope & in an optimum
fashion in the nonasymptotic case,

Stochastic approximation in general, and the Robbins-Munro
procedure in particular, are nonparametric, Therefore the WB coding
scheme will also work in the case of nongaussian white noise.

What about the probability of error? Sacks' theorem [Ref, 15]

th toti i i i i i that X is
on e asymptotic distribution of Xn+l implies ntl
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asymptotically gaussian with the required variance, Hence all the
calculations given earlier in this chapter are still valid for large N,
Finally, does one achieve channel capacity when the additive
noise is nongaussian? The critical rate of our system is still
=P /No’ and this gives a lower bound on the channel capacity

R .
crit av
for the nongaussian case,

E. INFLUENCE OF FEEDBACK NOISE ON WB CODING SCHEME

In the case of noiseless feedback it is immaterial whether Xn+l
or Yn(xn) is sent back to the transmitter. This is not true in the
case of noisy feedback, The following notation is adopted for this
case: a single prime refers to the forward direction and a double
prime to the feedback link. Thus N!/2 is the (two-sided) power
spectral density of the additive white gaussian noise in the forward
channel, and N;/E is the corresponding quantity for the feedback 1link,

The estimates of © obtained by the receiver and transmitter
are denoted by X' and X; respectively, Y;(X;) is the noisy
observation made by the receiver., This value is sent back to the
transmitter which obtains Y;(X;) = Y;(x;) + z;, where z; is the
additive noise in the feedback link,

The influence of feedback noise is mainly a reduction in relative
rate R/C in the case where the receiver's estimate Xn+l is sent
back to the transmitter, The probability of error increases only
slightly. When the receiver's observation Y;(X;) is sent back to
the transmitter, the feedback noise reduces the rate only slightly and
its main effect is an increase in the error probability,

Consider first the case where Xn+l is sent back, gquation (2.4)
for the average power changes in that an additional term « (N;/E)(N/T)
due to the feedback noise appears, and also 02 changes slightly,
that is, 02 = (Né + ogNg) instead of 02 = N /2. If it is
assumed that the feedback noise is small compared to the additive dis-
turbance in the forward channel, then 02 will only change slightly.

The error probability in Eq. (2.3) will also only change slightly

provided that all other quantities in Eq. (2.3) remain the same.
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Figure 11 is a plot of the relative rate

2 "
o N-1 N N-1
R 1 o) 1 2 o) 1
R_o1-od=4 |2 L, 2 o 1 2.1k
c= G-l © T ot N (NFTOE % (2.14)
(o] k:l (o] k=1

vs the number N of iterations for different values of N;. The
upper curve is for noiseless feedback. The probability of error for
noiseless feedback is Pé = lO_h. In the case of noisy feedback it is
only slightly higher. Equation (2.14) follows from formula (2.4)
adding the additional term OQ(N;/E)(N/T). For Qi the optimum value

for noiseless feedback is used, that is, the value given by Eq. (2.7).

09

0.8+

o7

o
o
T

o
o
g

FEEDBACK NOISE \N4=-40db

RELATIVE RATE R/C
o
b
T

03

o) -

NUMBER OF ITERATIONS N

FIG. 11. THE RELATIVE RATE VS THE
NUMBER OF ITERATIONS FOR THE CASE
WHERE Xn IS SENT BACK.

It is seen from Fig, 1] that for noiseless feedback the relative
ratc approaches unity with increasing N; while in the case of noisy
feedback, the curve for noiseless feedback is followed for some time
after which the relative rate drops to zero quite suddenly, Note that

no optimization in the presence of fecedback noise is attempted. The

SEL-(5-073 - 26 -




particular system is optimum for N = O,
The feedback power be is
N-1
1 1 2 1 1 N
P, = = (N' + o_ N") =+ = = (2.15)
fb Oi T 2 o 0. 0 kel k 12 T

and is again hardly affected by the feedback noise.
Now consider the case where Y&(X;) is sent back. The average
transmitted power as given by Eq. (2.4) is only slightly affected in

2 1
that now o = %(Né + N;) instead of O°

= Né/2 and the same is true
for the relative rate, assuming Ng small compared to Né.
What is the influence of the feedback noise on the error prob-

ability? X;+l as used by the transmitter is equal to

1t 13 l 1] 134

ntl Xn an Yn (Xn)

where Y" (X) = Y' (X') + 2 in which Y' (X) = F(X") + 2' is the
n n n n n n n n n

noisy observation made by the receiver. A simple derivation shows

that

n
X' =X + X g 2 oz (2.16)
a . i i
i=1
where X'+l is the estimate of the message point © computed by the
n

receiver, Hence,

2 _112 n

o- , 0 (1
X' ~N |6, —=—+-— T .—)
ntl ®n of =1 \M)
. 2 . .
and the variance, say Gt’ of XN+l is equal to
2 2 N 2
of i = (%-) (2.17)
aN o i=1

The formula for the probability of error is

—

O}
=2
2,

-1 g 2(1-e)
P = 2 erfc = 2 erfc | —5— (2.18)
€ 6] 20t
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Again, as in the noiseless feedback case, let us find the optimum

2 . :
value QB of ag. (Note that in the earlier case, where the receiver's

estimate Xn+l is sent back, such an optimization was not attempted
for nonzero feedback noise.) As before,

2 N-1

ce=1 -2t [+ ¢ 2 (2.6)
C ON k
(o] k=1

where now No = Né + N;. It is desired to minimize the probability

2
of error with respect to o . From Eq. (2,18) this is equivalent to

minimizing Oi N—e. Setting the derivative equal to zero,
d 2 ¢ 1 £ € 2 € R -1 1
5 (ot N ¥) = 5 Oy N+ 0o N (1n N) [E (1n N) Eﬁ_.J =0
do a o
yields
f -1
2 R
= - 2'
o, 6NO<(:> (2.19)

which has the same form as Eq. (2.,7) for noiseless feedback.

Figure 12 shows curves of the probability of error Pe vs the
number of iterations N, with the parameter being the power spectral
density N;/Né of the feedback noise relative to the corresponding
quantity for the forward link. The Pe curves have a minimum for
nonzero variance of the feedback noise, and it does not make sense
to do more iterations per message than the value indicated by the

minimum of the Pe curve,

The average feedback power be is
Qi N N
=P - —= + = = 2.2
be av 12T 2 T ( O>

In conclusion, it should be observed that one can either (1)
insist on a vanishing probability of error in which case the rate of
signaling will approach zero, or (2) require a nonvanishing rate in
which case there is a minimum achievable probability of error different

from zero.
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Na/Ny = 0.0

RELATIVE RATE R/C
= 0.6

RELATIVE
FEEDBACK
NOISE NJ/Ny= O

PROBABILITY OF ERROR P
S,
.
T

1 L I} { 1
10 10t 0% 0% 0% io* 0o

NUMBER OF ITERATIONS N

FIG. 12. PROBABILITY OF ERROR VS
NUMBER OF ITERATIONS.

Note that the performance of the WB coding scheme, which achieves
channel capacity with noiseless feedback, has been analyzed in the
presence of feedback noise, Our results for noisy feedback, however,
do not preclude the existence of systems that perform better with

noisy feedback information.
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ITI. A FEEDBACK COMMUNICATION SYSTEM WITH A CONSTRAINT ON THE BANDWIDTH

Let T be the time in seconds necessary for the transmission of
a particular message. For the WB coding scheme discussed in the last
chapter, as for orthogonal codes in one-way transmission, the bandwidth
W(T) of the transmission is an exponential function of the coding
delay T. In order to make the probability of error vanish for a
fixed relative rate smaller than one, a large bandwidth is required,

Suppose now that one is given a fixed bandwidth W, which the
transmission is not supposed to exceed. With this additional trans-
mitter constraint imposed, the channel capacity C is no longer
P /N as in Eq. (1.1a), but is now given by Eq. (1.1b), or W 1n
(1 + (P_/NW)], nats/sec. For small values of P__/N W the latter

av’' o av' "o

capacity approaches that of Eq, (l.la) as it should, for when W - «
both channels are identical,

Shannon [Ref. 16] derives the capacity formula, Eq. (1.1b), by
a random coding argument, and up till now no deterministic way was
known for constructing a code achieving the critical rate for a band-
limited white gaussian noise channel with or without feedback., 1In the
present chapter the first such code will be developed for the case
where noiseless feedback is available,

As in the preceding chapter, an optimization for finite block-
length is carried through, the results are compared with bounds on
one-way transmission plotted by Slepian [Ref, 1071, and the deterioration

of the present scheme due to feedback noise is considered.

A. THE BL CODING SCHEME
In the WB coding scheme discussed in the last chapter the variance
of the estimate X for the message point © was inversely propor-

N+1

tional to the number N of iterations. The critical rate was Rcrit =

(In N)/2T nats/sec, and in order to achieve a constant rate onc had to
choose N = ezAT, that is, the number of transmissions had to increase
exponentially with time.

Now suppose one has to meet a bandwidth constraint W in cycles

per second. In this case the number of independent transmissions can
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only increase linearly with time, The highest number of independent
transmissions per second is approximately equal to 2W, Substituting
N = 2WT in the formula for the critical rate above gives Rcrit =
(1n 2WT)/2T nats/sec, Hence, R __._ - O with increasing T, and

rit
so the system discussed in the 1a:t chapter has to be modified in order
to achieve a constant rate different from zero in the bandlimited case.
Two useful observations can be made at this point, First, while
the critical rate approaches zero when one takes 2W iterations per
second the asymptotic relation RCrit(T) A~ PaV(T)/N0 is still valid,
In other words, both the rate and the average power approach zero for
increasing T. The limit of their ratio, however, is equal to the
constant No' The second observation is that XN+l can be looked at
as the maximum likelihood estimate of © having observed Yl(Xl)
through Yn(Xn), and assuming gaussian noise, as explained in Sec. IID.
With the above two observations in mind, a coding scheme can now
be constructed for the bandlimited white gaussian noise channel,
Suppose that transmissions take place at integer values of time,
the time unit being 1/(2W) sec. Numbers are sent again by amplitude
modulating some basic waveform of bandwidth W and unit energy., The
disturbance is white gaussian noise (with spectral density No/2),
and reception takes place using a matched filter,
The coding scheme starts out the same as in Sec, IIBZ2,
At the transmitter:

l]. Divide the unit interval [O, 17 into M disjoint message
intervals of equal length., Let © be the midpoint of the
message interval corresponding to the particular message to be
transmitted.

2. At instant one, transmit o'(Xll - 8), where X,, = 0.5 and

& 1is some constant to be determined later,

At the receiver:
1. Receive Yll(xll) = O(Xll - 0) + Z > Wwhere 2z . is as before

. . . 2
a gaussian random variable with mean zero and variance g = Nn/2.

2. Compute XLQ = Xll - ofl

Xgl back to the transmitter.

Yli(xll)’ then set X21 = X12 and send
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Up to this point everything is the same as for the coding scheme of
Sec. IIB2. In other words, X, - 0 = —(l/oozll, where X, is the
maximum likelihood estimate of © having observed Yll(Xll)'

Now in order to prevent the expected power per transmission to
decrease, as it did in the WB coding scheme, the next transmission is
goc(X21 - 6) instead of Q’(X21 - ), where the constant g will be

determined presently., The receiver obtains the noisy observation

X = X, -
Y21( 21) g o1 o) + 25

and then computes

X, = X —(gor)_lY2

22 2l l(XEl)

One now has two independent estimates of 0:

1 1
X =0 -=12 d X =606 - =7
21 a1 o2 ga ‘21
For the value X31 to be sent back to the transmitter, one takes the
maximum likelihood estimate of © having observed Yll(xll) and
Y21(X21)’ that is,
2 2
1 (1 ) 2
—_— X +| = X X + X
(go) 21 "\o ) feo Yo 7B o

X . —
31 s 2 L 2 N
04 g

What is the variance of our successive maximum likelihood

estimates X , X X _? It is known that

11 21’ 31
02 62 1
X, ~nN (8, < and X ~N |6, & ——
s 2 - bl 2
=l o, 34 of L+g
o 1
If, however, g = (& - L)< is chosen, then
02
X, ~N {8,
2.2
o ()
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In general, Xil’ i=2,3, ..., is sent back, The next transmission

(o - 1)7 (x, - @) (3.1)

but the receiver obtains

Y. (X )=oi'l(a2—1)'21"(x -0) +2
i1'7i1 il il

and then computes

-1
i-1 , 2 1
= X - - 2
X12 il “ (o 1) Yil(xil)
and
2
+ -
< Xy (- X,
i+l,1 2
0]
The maximum likelihood estimate Xi+l 1 is normally distributed with
2,1 J
mean 6 and variance 02/[(a Y], that is,
02
~ e
Xi+1,l N ? (ozg)i (3.2)

From this point on, the analysis is very similar again to that
of Chapter II. Suppose the transmitter sends one of M possible
messages, that is, the interval [0, 1] is divided into M disjoint
equal-length message intervals, The message point © is the midpoint
of the message interval corresponding to the particular message being
transmitted. The probability of the receiver deciding on the wrong

message interval (i.e., the probability of X lying outside the

N+1
correct interval) is [see Eq. (2.3a)]:
1,,~1
P = 2 erfc|&=——
\G/a
Now pick M = Oy(l—ez that is, R = (lnM)/N = (1 - ¢) 1ln g
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nats/dimension (the time unit was 1/(2W) sec), This gives for the

probability of error

O’N€
P = 2 erfc —_— .
. s (3.3)
and thus
F) for ¢>0
lim P (N, €) =
Nowo €
1 for € <O
In other words the critical rate 1is equal to RCrit = 1ln q, nats/
A
dimension, Putting O = € gives R . = A,
crit

Next let us derive an expression for the average power, Pav'

N 12 2

1 e _ 2 i-1 2 = _ 1

P,= TFEq¢ (xll 9)" + .2 o (o 1) xi,l e ‘[
i=2 _ B
N 1 ]2 2

2 - _
- 2o E(x, - 92+ T A (67 - 1)2 ——

i=2 1 (o)

2 A
Substituting T = N/(2W) sec, 0 = N0/2, o =¢€, and

2
E(Xll - 8)° = 1/12 (assuming a uniform prior distribution for 8),
one gets
2A
We N-1 2A
P= o ot g NW (7T - 1) (3.4)
Hence, asymptotically,
4 1
A=7 1n |l + ﬁﬁ% nats/dimension, or
o
Rcrit - <
Pav
2WA = W 1n|l + 7 nats/sec  (3.5)
o
.
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which is the channel capacity as computed by Shannon [Ref, 16]3 This

result proves that the BL coding system presented here achieves capacity

for the bandlimited white gaussian noise channel, It is the first

deterministic coding procedure to do so.

B. OPTIMIZATION FOR FINITE BLOCKLENGTH

As in Chapter II, let us now investigate how far one falls
short of the ideal when only permitting a finite coding delay N (in
time units of 1/(2W) sec).

th
In Sec. A the slope o& at the i transmission was taken as

1
i-148, 2(1-8. )
Q I ll (ag _ l) 11

where

0 if i #£j

In order to make an optimization possible, an additional factor

a 1is introduced, hence

=188, &

1
5(1-6..)
o, = ao (a 1l

- 1) i=1,2,3,... (3.6)

The receiver now has

= -9
Yil(xil) o:i(xil ) + zil

and computes

-1
= - X
Xie Xil % Yil( 11)’

21 12’

and 5
. ) X+ (o - )X,
i+l,1 O?

for i= 2, 3, oo
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Effecctively, the introduction of the factor a reduces N by a
o
2
factor a
By Eq,. (3.3) minimizing the probability ol error is equivalent

to maximizing the expression

“Ne
2 o .
o7 L (3.1)
o
wherc - can be obtained from
R=(1-¢)1n q nats/dimension (3.9)

2
and ¢ = No/2 was substituted for the variance.
A
Substituting © = e in Eq. (3.4) and allowing for the additional

factor a 1leads to the following expression for the average power,

N ‘
2 Wo N-1 o 2 |

pav =2 6N * N 2 w(om - 1)

a
which can be modified as
P 2
av 2 0] N-1 2
NW " a ENN_ Sl C ) (3.9)

Now assuming C, R, W, No’ and N constant, let us maximize
expression (3.7) with respect to a2. Note that C and W constant

implies P__/N W constant, for
av’ o

P
- W / av 1.1b
c 1n \? Ty (1.1b)
o
Having gone through these preliminaries, one is now ready to

2
perform the optimization, Set the derivative of ag(a NE/ENO) equal

to zero,
N / \
2Ne | 2N / 2 2
d (;2 o " _ ¢ 2. d [FNe N aof L2 e Nedae dad” o
eN | T 2N v de -
d82 g o o dO? | 2No da2 de 2No dQ? da2
\ (3.10)

SEL-65-073 - 36 -




From Eq. (3.8) it follows that

2R c
e=1- 5 and —gg = fg 1 55
l1n ¢ do o (1n o)

and from Eq. (3.9) it follows that

2
do. of
— =
da a4 6NO(N—1)

Making these substitutions in Eq. (3.10) and putting the result

equal to zero finally gives, after some algebra, the following simple

2 2
expression for the optimum value ao of a :

a_ = 6N (3.11)

For the probability of error, substituting 02 = No/2 and

ai = 6No in Eq. (3.3), one has

’

1
2N -
Pe = 2 erfc (?a €

Solving for o? from Egs. (3.9) and (3.11) gives

jae)

2 N-1
- ==+
a N

4
=

By Eq. (3.8) one has

/
R -€ l-¢
—2W—1nofl or :exp( )

where R is now in nats/second. Hence,

2
N-1 + Pav
c o N NOW
T ex R i} ex R
P\ Zw P ew)
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and finally,
-\
4 . N/2

av

Pt
N

=z
=

P, =2 erfc ¢ /3 o (1.2¢)

=|=|o
g

o

exp

N J

This final result will be compared in the next section with the

bounds on one-way communication as obtained by Slepian [Ref, 107].

C. COMPARISON WITH SLEPIAN'S RESULTS

In 1963 Slepian [Ref. 10 plotted lower bounds on communication
in the one-way case based on a geometrical approach to the coding
problem for bandlimited white gaussian noise channels used by Shannon
[Ref, 67. That is, there is no one-way communication system whose
performance is any better than that plotted by Slepian. Figures 173
through 18 compare Slepian's curves (dashed lines) with the results
described by Eq. (1.2¢) (solid lines). Note that the solid curves
are exact; that is, they are not a bound as Slepian's curves are,

The graphs presented in this section are described below.

1. Figure 13 shows the signal-to-noise ratio S/N = 10 1oglO
(PaV/NoW) in decibels vs the rate R/W in dits/cycle, as given
by Shannon's capacity formula, Eq. (1.1b).

2. Figures l4a-c indicate the additional signal-to-noise ratio, in
decibels above the value indicated in Fig. 13, required for a
finite coding delay N, as a function of the rate in dits per
cycle, The probability of error for the three figures is
respectively, Pe = 10_2, 10-a, and 10-6. It is seen that a
large improvement is obtained by going from N =5 to N =15,
especially in the feedback scheme, Increasing the coding delay
further does not result in much improvement,

3. Figures 15a,b are plots of the additional signal-to-noise ratio
in decibels above the ideal value indicated in Fig. 13 vs the
coding delay N, for different values of the probability of

error Pe and for a rate of R/W = 0.2 dit per cycle. Figure
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15b represents a plot for the bounds computed by Slepian, Note
that the curves for the feedback scheme (Fig, 15a) indicate a
much lower relative (to the ideal, given in Fig, 13) signal-to-
noise ratio, except for extremely small values of N,

Figures 16a,b are plots of the probability of error vs the coding
delay N, with the signal-to-noise ratio in decibels above the
ideal as the parameter, The rate is R/W = 0.2 dit per cycle,
Note the difference in shape between the two sets of curves,
Figure 17 is a plot of the relative rate R/C vs the rate R/W
in dits per cycle for different values of the coding delay. The
probability of error is Pe = lO_u.
Figures 18a,b are plots of the relative rate R/C vs the coding

delay N for different values of the signal-to-noise ratio,

e L | | ! | |
G 0z 04 06 08 1012 14
R/W IN DITS PER CYCLE

FIG. 13. THE SIGNAL-TO-NOISE RATIO
REQUIRED BY SHANNON'S CAPACITY
FORMULA,
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R/W IN DITS PER CYCLE

FIG. 17. THE RELATIVE RATE VERSUS
THE RATE PER UNIT BANDWIDTH FOR
DIFFERENT VALUES OF THE CODING
DELAY.
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D. INFLUENCE OF FEEDBACK NOISE ON THE BIL CODING SCHEME

In this section only the configuration in which YA(X;) (the
received "number") is sent back will be investigated. The results for
the case where Xn (the receiver's estimate) is sent back are similar
to those in the last chapter in that the rate drops off to zero quickly.

Using the same notation as in Chapter II, it follows easily that

1 O? 1 N -1
' - Xn + - " + A )
X1, = Fwe,n YA 4 5 R ) (3.12)
0] i=2
1
where ¥ =0, and «, is given by Eq. (3.6). Hence:
1=2 t
2 "o "e
1 g'" + 0 o we , 2(N-1)
1 ~ —_— _
1,1 "N 9% v ¢ Tz to (@ 1)
a 0 (04

The variance of of the estimate Xﬁ+l of 0, as computed by the

receiver, is

2 2 2
2 1 o' + g" g’ we , 2(N-1)
o, = 3 5 + 2+o (o -
a 6] Q

1) (3.13)

For the probability of error one has, from Eq. (3.3),

N(-€)
Pe = 2 erfc B (3.14)
t
where again R = (1 - ¢) 1ln 0, nats/dimension,

The expression for the signal-to-noise ratio in the forward

direction is, from Eq. (3.9),

N, 1

Pav _ a2 O? + N-1 o™t No (q

- ONN'*® N N' *
o (o]

2

- 1) (3.15)

Figure 19 presents curves for the probability of error Pe Vs

the coding delay N {for R/W = 0.2 dit per cycle, and different values
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of the feedback noise relative to the forward noise, Ng/Né. For a

the value

2
a = 6N$ as given by Eq. (3.11) is used.

2

Hence, the curves

present the degradation due to feedback noise of a system that is

optimum for the noiseless feedback case,.
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IV, CONCLUDING REMARKS

The WB (wideband) coding scheme was suggested by the Robbins-Munro
stochastic approximation procedure. In the gaussian case it turns out
that this coding procedure determines the maximum likelihood estimate
of the message point 6 recursively, Since the maximum likelihood
estimate approaches © and the transmitted power is proportional to
the square of the difference, the expected transmitted power per
iteration decreases in this scheme. Retaining the maximum likelihood
property but making up for the transmitted power in order to make the
expected power per transmission a constant, leads to the BL (bandlimited)
coding scheme, This simple scheme is the first deterministic procedure
to achieve the channel capacity, Eq. (1.1b), of the bandlimited white
gaussian noise channel.

It is believed that this approach of recursive maximum likelihood
estimation to the coding problem with feedback has a much wider area
of application; for example, channels with unknown parameters, fading
channels, dependences between the noises in forward and feedback links,
and so on. The method is ideally suited for noiseless feedback and it
may well be possible to find an extension that is in some sense optimum

for the noisy feedback case.
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